Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins.
نویسندگان
چکیده
Dormant spores of a Bacillus subtilis mutant that lacks two major small, acid-soluble spore proteins are very sensitive to UV irradiation, which in spores generates about half the amount of thymine-containing dimers formed by comparable irradiation of vegetative cells. Irradiation of mutant spores also produces spore photoproducts, but again only about one-half the amount formed in comparably irradiated wild-type spores. These findings suggest that the high UV sensitivity of the mutant spores is due to the production of pyrimidine dimers, which are not found in UV-irradiated wild-type spores, and that the high level of small, acid-soluble proteins found in wild-type spores is directly involved in spore UV resistance by facilitating a conformational change in spore DNA, preventing pyrimidine dimer formation.
منابع مشابه
Fate of thymine-containing dimers in the deoxyribonucleic acid of ultravioletirradiated Bacillus subtilis.
The fate of ultraviolet-induced, thymine-containing dimers in the deoxyribonucleic acid (DNA) of Bacillus subtilis was investigated in both the wild type (UV(R)) and an ultraviolet light-sensitive (UV(S)) mutant. During incubation in the dark, dimers were excised from the DNA of the UV(R)B. subtilis, but remained in the DNA of the UV(S) mutant. About 40% of the excised dimers recovered in the w...
متن کاملProperties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of...
متن کاملDecreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins.
Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance.
متن کاملSpore photoproduct (SP) lyase from Bacillus subtilis specifically binds to and cleaves SP (5-thyminyl-5,6-dihydrothymine) but not cyclobutane pyrimidine dimers in UV-irradiated DNA.
The predominant photolesion in the DNA of UV-irradiated dormant bacterial spores is the thymine dimer 5-thyminyl-5,6-dihydrothymine, commonly referred to as spore photoproduct (SP). A major determinant of SP repair during spore germination is its direct reversal by the enzyme SP lyase, encoded by the splB gene in Bacillus subtilis. SplB protein containing an N-terminal tag of six histidine resi...
متن کاملSerologic estimation of thymine dimers in the deoxyribonucleic acid of bacterial and mammalian cells following irradiation with ultraviolet light and postirradiation repair.
The repair of thymine dimers induced by irradiation with ultraviolet light was detected in the DNA of human fibroblast cells, HeLa, but not in the DNA of rat glial or rat pituitary cells. Thymine dimers were detected in the DNA of bacterial and mammalian cells after irradiation with levels of light which are biologically significant, as little as 50 ergs per mmz. The detection of thymine dimers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 2 شماره
صفحات -
تاریخ انتشار 1987